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Abstract--This paper presents an experimental determination of the virtual mass and drag 
coefficients of a disk oscillating sinusoidaUy in a two-phase mixture of air flowing through stagnant 
water. The purpose of this experiment was to determine the importance of virtual mass on the 
transient response of an INEL-type drag-disk flow meter. 

The results indicate that for a given void fraction, the virtual mass coefficient increases, and the 
drag coefficient decreases, with increasing amplitude parameter. Also, for a given amplitude 
parameter, the virtual mass coefficient decreases, and the drag coefficient increases, with increasing 
void fraction. 

Based on the measured virtual mass coefficients, it was concluded that when an INEL-type 
drag-disk is used for the measurement of transient two-phase flows, virtual mass effects may be 
neglected in the analysis of its response without appreciable error. 

1. I N T R O D U C T I O N  

In transient single-phase flows, the net hydrodynamic force on a bluff body is usually 
expressed as the sum of the virtual mass and drag forces (Morrison 1950). Analytical 
expressions for these forces have been previously obtained (Lyle & Lai 1972; Lai 1973) for 
low Reynolds number (i.e. Stokes) flows, in which there is no separation in the wake. Prior 
experimental work has centered around the determination of the Fourier-averaged drag and 
virtual mass coefficients, C~ and Cu, as functions of the period parameter. Experiments have 
been conducted for single-phase sinusoidally oscillating liquid flows past cylinders (Ke- 
ulegan & Carpenter 1958; Sarpkaya 1975), spheres (Sarpkya 1975), and plates (Keulegan & 
Carpenter 1958). Mercier (1973) oscillated a cylinder in a low speed stream and the Cu and 
C~ thus obtained were found to be in good agreement with those previously obtained by 
Keulegan & Carpenter (1958), for a stationary cylinder in an oscillating liquid flow. 

Here we present an experimental determination of the virtual mass and drag coefficients 
for a disk oscillating sinusoidally in a two-phase mixture of air flowing through stagnant 
water. The primary purpose of the experiment was to assess the importance of the effect of 
the virtual mass of the disk on the transient response of an INEL-type drag-disk during a 
blowdown transient. Inlour experiment, the disk was oscillated in a two-phase mixtui'e, 
although for an actual drag-disk, both the disk and the fluid undergo acceleration. 

Thus, according to potential flow theory, the virtual mass coefficient determined from 
our experiment should be smaller than in the case of an actual drag-disk. However, the 
effect of viscosity can be expected to compensate for this difference to some extent. 

2. D I S C U S S I O N  O F  E X P E R I M E N T  

The apparatus used in this experiment is shown schematically in figure 1. The disk was 
5.08era (2in.) in diameter, and was made of 304 stainless steel. It was sinusoidally 
oscillated by an electromechanical seismic shaker in a two-phase mixture of air flowing 
upward through a vertical plexiglass tube containing stagnant water. Figure 2 is a picture 
of the apparatus at a low air flow rate. 

The experimental conditions were such that the system pressure drop was dominated 

MF Vol. 10, No. 3--A 249 



250 p.s .  KAMATH et al. 

ELECTRICAL 

° GAUG 

7iiiii " - " !  
S.A.ER 'r-t  AIR 'W"[TE; t 

/ /  ,°,,- 

$ 

DRAIN / ~ " - - ~  ~ ~ ~  ~ R  L, a l  Llrl~i PLUG ~ N,,t 

k\\~l I k\\~l k\\ l'i!l,,'gYN 
i 

H 2 

AIR ~ DATUM LEVEL 

Figure 1. Experimental setup for the measurement of virtual mass and drag coefficients. 

by the hydrostatic head; thus the global void fraction, (~) ,  of the two-phase mixture could 
be measured using a manometer. An accelerometer mounted on the disk measured the 
instantaneous acceleration of the disk, and a strain-gauge mounted on the beam measured 
the instantaneous sum of the drag and inertia forces. The shaker, shown in figure 2, was 
of the electromeehanical type, and employed special air bearings to ensure sufficient lateral 
stiffness. It was driven by a power amplifier, the input to which was a sinusoidal signal 
of the desired frequency from a function generator. 

The beam, which supported the disk, was also made of 304 stainless steel and was of 
rectangular cross-section. It was designed to be flexible enough to give a measurable strain, 
and yet stiff enough to prevent contamination of the strain gauge and aecelerometer signals 
by its modal frequencies. To insure this, the natural frequency of the beam, f~, given by, 

k 31i/ 
~=M=MP' [1] 

where k is the beam stiffness, was made greater than four times the highest frequency of 
oscillation of the disk. In [1], E is Young's modulus and I, the moment of inertia about 
the neutral axis. The cantilever arm length, 1, was taken to be the length of the beam (figure 
1). The mass, M (132 gm), at the outer end of the cantilever was calculated as an equivalent 
mass, concentrated at the center of the disk, of the distributed beam and disk masses. 

The beam strain at the location of the strain gauge equals the stress divided by Young's 
modulus, or, 

Strain = ~__h.~L,. t2 ] 
2EI 
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Figure 2. Experimental setup with air/water mixture at low void fraction. 

where the thickness of the beam, h, was 0.17 cm (0.066 in.), its breadth was 0.51 cm (0.2 in.) 
and L, its length, was 7.62 cm (3 in.). To size the strain gauge, the force at the location 
of the strain gauge, Fso, was estimated using [9], presented later with typical values for 
the virtual mass (CM) and drag coefficients (Co), given by Keulegan & Carpenter (1958). 

The beam was welded onto a 304 stainless steel sting, which was made stiff enough to 
give zero-slope and zero-deflection conditions at the fixed end of the beam. 

Figure 3 shows a block diagram of the data acquisition electronics used in the 
experiment. The signals from the accelerometer and the strain gauge were amplified to a 
range of 0 to 10 volts to be compatible with the analog-to-digital (A/D) converter. An 
active low-pass filter with a cutoff frequency of 100 Hz was used to filter out higher 
frequency noise from the signals. The signals were then sampled and digitized. Table 1 
shows the sampling frequencies for the various frequencies of oscillation. A 60 Hz noise 
in the strain gauge signal necessitated a sampling frequency above the Nyquist value of 
120 Hz for all cases. The digital signals were fed into a PDP-9 mini-computer through a 
CAMAC module and stored on digital tape. Before processing the data, the strain guage 
and accelerometer signals were smoothed using a numerical low-pass filter with a linear 
roll-off (Ormsby 1971). The procedure used is fully described by Kamath & Lahey (1981). 
Table 1 shows the sampling frequencies (f,), and the filter cut-off frequencies (fr) for the 
various forcing frequencies (f0) investigated. 
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Figure 3. Block diagram of data acquisition electronics. 

To calibrate to strain gauge, the paddle was mounted on a rigid support and the disk 
was loaded with known weights. As expected, the force was observed to have a linear 
relationship with strain gauge output. The accelerometer was then calibrated by oscillating 
the paddle in air. The inertia force measured by the strain gauge and the known mass of 
the disk and beam were used to calculate the acceleration at each instant of time, which 
was then compared to the output of the accelerometer to obtain a calibration constant. 

Table 1. Sampling frequencies and lowpass filter cutoff and roll-off termination frequencies for 
different forcing frequencies 

F r l q u l m w o f  
0 1 c t l l i t t o l l  (t'o) 

31.28 HZ 

15.623 HZ 

7.812S HZ 

3.90625 HZ 

l • 9531Z5 HZ 

Slllp111ui 
Frtqumc:t (fs) 

CutOff f~quency 
of  Nmmrtcol 
F i l t e r  ( f¢)  

SOONZ 

2SO HZ 

lZS HZ 

lZS HZ 

125 ItZ 

40 HZ 

ZO HZ 

10 HZ 

5 HZ 

Z.5 HZ 

Ro11,-off 
Temtnatton 
F r t q u e ~  of 
Numm'4 Cill F t l t e r  

(fr) 

44 Hz 

22 HZ 

11 Hz 

6 Hz 

3.5HZ 
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3. DISCUSSION OF ANALYSIS 
The cquation of motion of the isolated body, consisting of the disk and the beam, is given 

by Newton's second law of motion, 

time rate of change ] 
of momentum of the 

isolated body 

sum of the external 1 
forces on the 
isolated body 

[3] 

The left-hand side of [3] is given by, 

k time rate of change 
of momentum of the 

isolated body 

M d2x M .. 
~ X  

gc d t  2 - gc 
[4] 

where Co is the drag coefficient and D is the disk diameter. The one-dimensional liquid phase 
velocity, <vt>, is zero in this experiment. 

The virtual mass force was expressed as, 

c.<:> /n,'~ d ... i. 
gc t " ' - x j  [61 

where C,. is the virtual mass coefficient and <# > is the two-phase density. The representative 
velocity of the two-phase mixture is the center-of-mass velocity, Urn, given by, 

G LoL<I - ~><vL> + pc<ct><v~>] 

Since the motion of the fluid is steady, (dU, . /d t )  = 0; thus [6] becomes, 

F~, = [8] 
3go 

Substituting [4], [5] and [8] into [3], including the shear force, Fs~, and rearranging, the 
resultant equation is: 

[ F ~ =  M + C , .  T <p> ~+-T-~  -L°~<l-~>~l~l]" [9] 

The expression forms the basis of the calculation of the coefficients C., and Co from the 
measurement of Fs~ and ~. The data reduction technique employed will be described in the 
next section. 

[7] 

[5] 
- 2g c 

where x is the displacement. 
The external forces consist of the drag and virtual mass forces in addition to the shear 

force at the location of the strain gauge, Fs~. Since the vapor phase drag was relatively 
unimportant in our low pressure experiment, only the liquid phase drag was included in our 
model. Hence, the expression used for the drag force was, 
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4. D A T A  R E D U C T I O N  

The virtual mass and drag coefficients, C,~ and Co, appear in the virtual mass and drag 
components of the total force given in [9]. 

The virtual mass force, being an inertial force, is in-phase with the acceleration. Also, it 
will be shown shortly that for sinusoidal motion of the disk, the Fourier series for drag force 
has frequency components that are odd multiples of the fundamental frequency (Keulegan 
& Carpenter 1958). In this series, the component with the largest magnitude and the lowest 
frequency (i.e. the fundamental) is one-quarter cycle out-of-phase with the acceleration. Thus 
a Finite Fourier Transform of the force signal, Fsa(t ), can be used to extract the Fourier- 
averaged drag and inertial components of the total force. This approach has been followed 
previously by Keulegan & Carpenter (1958). Garrison et al. (1977), used a least-squares 
approach which, for sinusoidal motion of the body yields a Cm identical to that of Keulegan 
and Carpenter, but a Co that is somewhat different. Both methods, though theoretically 
sound, were found unsuitable for use in this experiment. These methods, have been 
evaluated in detail elsewhere (Kamath & Lahey 1981) and will not be discussed further here. 

The method used in the present study uses the acceleration signal, 5i(t ), as the kernel to 
extract the inertial and drag components of the force signal. 

To use this approach, [9] is multiplied by 5~(t ) and integrated over an integral number 
of cycles. That is, 

ft t+nr [ [D3\ "1 ['t+nr Fso(t)£(t)dt= M+C,.[-~-)( f i )J3 ' ['x(t )] 2dt 

[lO] 

Equation [9] is then multiplied by £(t  + T/4) and again integrated over the same time 
interval, 

I t+nT [ ( D 3 ) ] f t t + n T  
Fsc(t)Y(t + T / 4 ) d t =  M +C,.  -~- ( ~ )  $(t)Ji(t + T/4)d t  

.it 

+~cgc pL(1 - ~ )   l F(t + T/4)dt.  
"it 

[ll] 

Let us now define: 

I 
t+nT 

I1 ~- Fsa(t)Ji(t )dt,  [12] 
,It 

('t+nT 
I2A-- I Fsa(t)g(t + T/4)at ,  [13] 

dt 

[3A f[ +nT - -  [.~ ( t ) ]  2 d t ,  [14] 

i4 A I t+nT -- 5i(t + T/4)2(t) dt, [15] 
,It 

t 
t+nT 

15 zx g(t)]g(t)[5~(t) dt, [16] 
.It 



and, 

MEASUREMENT OF VIRTUAL MA~ AND DRAG ~ C I E N T S  

/6 A ~(t)J:~(t)lJi(t + T/4) dt, 
t t+nT 

+ 1 

A2&---~(~-~'~)pl(l --*t). 

In terms of these variables, [10] and [I I] reduce to, 

11 = A l i  a + A215, 

12 = At& + A216. 

Solving [20] and [21] for At, 

and A2, 
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[17] 

[18] 

[19] 

[20] 

[21] 

and, 

x(t)  = xo sin 2n~t 

~(t) -- Xo(2nfo) cos 2x~t 

~(t) = - -  xo(2gfo) 2 sin 2nf#. 

The product, ~l~l can be expanded in a Fourier Series as, 

8 cos(2~nfot ). [29] ~J~l = Xo(2=fo)~ .~o ( - 1) (n+ I)t~n(n2 - 4)n 

[1116 - 12Is 1 3 
(7= = l1316 _ 1415 M (~-~D a, 

[24] 

~ la12 - Idl ~ [25] Ca 
~D2pL( I -- o~ ) [131, -- I4IsJ" 

For sinusoidal motion of the disk, the displacement, velocity and acceleration are given 

[26] 

[27] 

[28] 

by, 

and, 

Now substituting [22] and [23] into [18] and [19] and solving for the coefficients C.. and 
Co, one obtains, 

I d :  - Id ,  [231 
A2 = hl~ - l,,h" 

1,16 - h &  
A,  = hI~ - l , h '  [22] 
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Also, the acceleration, shifted in phase by one-quarter cycle, is given by, 

5~(t + T/4) = -- Xo(2r~f0) 2 cos 2nf0t. [30] 

Thus, the integrals, I4 and 15, given by [15] and [16], are equal to zero due to orthogonality. 
Also, the product, in [17] for 16 can be eliminated using [29] and noting that there 
is only one non-zero term in the series, thus, 

f t  t+nT 2 2 8 16 = Xo (2nfo) ~ cos 2nfot( - Xo)(2rtfo) 2 cos 2rtfot dt, [31] 

where [28] has been used for the acceleration, ~. Using [30], [31] can be expressed as, 

8 ;t t+nT 
16 = -- ~nXo [.~(t + T/4)] 2 dt. [32] 

Thus noting that/4 = 15 = 0 for sinusoidal motion of the disk, and using [12]--[14] and [32] 
for 11, 12, 13 and 16, [24] and [25] can be written in explicit form as, 

and, 

Ig_ (,+.r MJ c I. Fso(t)5~(t ) dt 
3 .l l 

n3<~)  ' C.  = [ ,+.r  
[2(012 dt 

j t  

FI ",+.r "-1 /J, Fsa(t)5~(t + T/4) d q  
Co = I: ~ . . . . .  .I 3go 

f t  [x(t+T/4']2dt J pt(1-O~)D2x°" 

[33] 

[34] 

Equations [33] and [34] were used to calculate the coefficients, Cm and Co. 
The amplitude of oscillation of the disk, x0, was calculated by using the acceleration 

signal, 5/(0. Assuming sinusoidal motion of the disk, the recorded acceleration signal is 
approximated by a chopped sinusoid, represented by, 

5i(0 = ~" Ao sin 2nf0t, 

t 0, 
It[_< To 

[351 
otherwise 

where, according to [28], 

ao -~ - Xo(2nfo) ~. [36] 

If At is the time interval between samples, and N is the number of samples, then, 

NAt 
To = - -  [37] 

2 

Let us now take the Fourier Transform of [35], 

;q)~-f~_~(t)e-J:~/'dt, [38] 
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and the inverse transformation is, 

(t) ~- ~(f) e ~¢' df 
--00 

Substituting [35] into [36] and integrating one obtains, 

~(f) -- -jAoTo, 

and, 
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[39] 

[40] 

This expression was used for calculation of xo. The Fourier transform calculations, for 
the evaluation of ~(f0), were performed using a Fast Fourier Transform (FTT) algorithm 
proposed by Brigham (1974). The frequency of oscillation, f0, was determined from the 
location of the peak of the power spectral density (PSD) function of the acceleration signal, 
given by, 

PSD - [~(f)~*0c)] 'n, [43] 

where ~(f)* is the complex conjugate £(f) .  The calculated value of x0 was used in [33] and 
[34] for the calculation of Cm and CD. 

5. E X P E R I M E N T A L  RESULTS 

The measured virtual mass and drag coefficients are listed in tables 2-7 for various void 
fractions. The results are tabulated for a range of amplitude parameters between about 1 / 10 
and 4/3, the range expected for an INEL drag-disk undergoing a blowdown transient. The 
Reynolds numbers in these tables were calculated using, 

Re ~ (/~)uoD [44] 

where the two-phase density and dynamic viscosity properties are defined as, 

and uo, the maximum sinusoidal velocity, given by, 

uo = Xo(2nfo). [4'7] 

Substituting [45]-[47] into [44] the Reynolds number can be written as, 

Re = f(a)xoD (2=f0), [48] 

[45] 

[46] 

2: o)1 [42] 
x. =(2=fo)2N~r. 

Substituting [36] and [37] into [41], and solving for x0, one obtains, 

IAol To. [41] 
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Table 2. Virtual mass and drag coefficients at various amplitude parameters for single-phase liquid 
(<~ > = o) 

Amplitude Virtual Mass Drag Reynolds 
Parameter Coefficient Coefficient Number 
2Tx ( - - ~ )  (Ca) (C D ) 

0.i0 0.27 19.70 1,934 

0.14 0.58 15.60 3,406 

0.20 0.52 14.10 1,716 

0.20 0.48 15.30 1,808 

0.26 0.62 12.66 6,134 

0.30 0.42 i0.13 7,125 

0.33 1.21 12.i0 3,922 

0.37 0.79 6.73 4,305 

0.43 1.24 9.63 4,912 

0.49 1.04 3.65 5,792 

0.51 1.09 5.58 6,075 

0.66 1.93 3.54 3,929 

0.91 1.20 4.51 5,368 

0.91 1.68 7.88 5,524 

0.92 1.57 11.58 5,755 

0.94 1.59 3.64 5,556 

1.22 1.83 5.07 7,216 

where, 

(PL - - vd( ) 
.L- > 

[49] 

Equations [48] and [49] were used for the calculation of  the Reynolds numbers listed in tables 
2-7. Typical accelerometer and strain gauge signals, at frequencies ( f )  of  15.6 Hz, 7.8 Hz 
and 1.9 Hz, are shown in figures 4, 6 and 8. Before reducing the data, they were smoothed 
using the numerical low-pass filter algorithm mentioned previously. The corresponding 

Table 3. Virtual mass and drag coefficients at various amplitude parameters for a void fraction 
of 3.5% 

Amplitude Virtual Mass Drag Reynolds 
Parameter Coefficient Coefficient Number 
2 - x  o C _.D_~ ) (c~) (c D ) 

0.12 0.50 31.94 2,850 

0.14 0.47 28.35 5,289 
0.21 0.41 16.13 4,852 

0.22 0.24 13.31 5,269 

0.35 0.52 16.81 5,950 

0.35 0.77 14.12 4,112 

0.41 0.81 10.26 4,649 

0.49 0.49 5.11 5,751 

0.75 0.90 4.29 4)291 
0.87 1.17 3.56 5,066 

0.91 0 . 9 3  2.98 5,413 

0.93 0.94 1.75 5,481 

0.98 1.01 8.21 5,788 

1.15 1.29 4.5 6,810 

1.26 0.90 4.03 7,476 
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Table 4. Virtual mass and drag coefficients at various amplitude parameters for a void fraction 
of 7% 
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Amplitude Virtual Mass Drag Reynolds 
Parameter Coefficient Coefficient Number 

~ - ~ 1  (Cm) (C D) 

0.11 0 .58 54.20 2,S01 
0.1~ 0 .43 53.04 3,028 
0.16 0 .45 24.80 3,757 
0.18 0.42 21.96 4,236 
0.35 0 .56 15.25 4,105 

0.50 0.73 4.41 5,852 

0.74 0.79 12.42 4,367 

0.82 i.ii 2.82 4,862 

0.85 0.95 3.66 5,052 
1.06 0.81 1.82 6,266 
1.10 1.00 7.16 6,550 
1.17 1 .26 2.62 6,512 

Table 5. Virtual mass and drag coefficients at various amplitude parameters for a void fraction 
of 127/o 

Amplitude Virtual Mass Drag Reynolds 
Parameter Coefficient Coefficient Number 

0.12 0.29 31.26 2,735 
0.14 0.30 23.25 3,171 
0.16 0.23 24.00 3,744 
0.21 0.25 18.20 4,950 
0.56 0.46 16.80 1,380 

0.48 0.57 5.83 5,638 
0.49 0.48 5.70 5,657 

0.82 0.98 6.38 4,829 

1.05 0.87 6.64 6,207 
1.23 1.21 5.81 7,281 

3169.O 

2856.3 

2543.6 

h- 2230.9 
o. 
I.- 
o 1918.1 

1605.4 

1292.7 

980.0 

1 # ~  STRAIN GAGE (- )  

. I ACCELEROMETER(+) 

3 18 33 4e 63 
DATA POINT NO. 

Figure 4. Unfiltered accelerometer and strain gage outputs in single-phase liquid at 15.6Hz. 
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Table 6. Virtual mass and drag coefficients at various amplitude parameters for a void fraction 
of 15.5~ 

Amplitude Virtual Mass Drag Reynolds 
Parameter Coefficient Coefficient Number 

0.12 0.19 25.60 2,879 

0.13 0.44 37.30 2,943 

0.16 0.38 25.40 3,700 

0.20 0.39 22.60 4,638 

0.34 0.64 11.60 3,987 

0.40 0.84 6.47 1,744 

0.46 0.78 10.90 5,408 

0.75 0.99 7.04 4,423 

0.80 1.09 10.00 1,709 

0.91 0.89 4.60 5,379 
1.08 0.94 1.70 5,961 

1.14 0.96 5.94 6,756 

1.18 1.13 2.82 6,967 

1.33 0.98 3.44 7,875 

filtered signals are shown in figures 5, 7 and 9. In figures 4--9, the strain gauge and 
accelerometer signals are very nearly inphase,t indicating that inertia forces were dominant. 

In figure 4, which is for single-phase liquid and an oscillation frequency off0 = 15.6 Hz, 
the accelerometer signal is seen to be very nearly sinusoidal. The strain gauge signal had a 
60 Hz noise component. A comparison of figures 4 and 5 shows that the numerical filter 
effectively removed the 60 Hz noise component. 

Figure 6 shows the sampled signals at a frequency of 7.8 Hz and a void fraction of 19~, 
which was the highest void fraction used in the experiment. At this void fraction, the motion 

Table 7. Virtual mass and drag coefficients at various amplitude parameters for a void fraction 
of 19~o 

Amplitude Virtual Mass Drag Reynolds 
Parameter Coefficient Coefficient Number 

2wx o (Cm) (C D) 
(--5--) 

0.12 0.15 31.63 2,853 

0.14 0.25 21.00 3,296 

0.16 0.45 30.75 3,538 

0.16 0.33 26.0 3,666 

0.26 0.32 9.80 3,093 

0.29 0.54 6.74 3,400 

0.30 0.30 13.62 3,454 

0.31 0.23 15.80 3,631 

0.68 0.66 S.O0 3,997 

0.71 0.82 10.90 4,193 

0.73 0.55 7.64 4,307 

0.79 0.$7 3.28 4,679 

0.95 0.67 9.25 5,609 

1.18 1.18 4.S0 6,963 

tNote inversion of  polarity of strain gage signal. 
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Figure 5. Filtered accelerometer and strain gage outputs in single-phase 5quid at 15.6 Hz with a 
cutoff frequency of 20 Hz. 
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Figure 6. Unfiltered accelerometcr and strain gage outputs for a void fraction of 19% at 7.8 Hz. 
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Figure 7. Filtered accelerometer and strain gage outputs for a void fraction of 19~/o at 7.8 Hz with 
a cutoff frequency of 10 Hz. 
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Figure 8. Unfiltered accelerometer and strain gage outputs for single-phase liquid at 1.9 Hz. 

of the two-phase fluid included a number of bubble swarms (i.e. eddies), propagating 
upwards through the pipe. The agitation of  the disk due to the eddies was almost periodic. 
Figures 6 and 7 show that the effect of the bubble swarms on the accelerometer signal was 
to introduce a low frequency component, whereas the strain gauge is seen to be less sensitive. 
At lower void fractions, there were no bubble swarms but the disk was perturbed by the 
effect of bubbles preferentially collecting under the lower surface of the disk, as shown in 
figure 10, 

As can be seen in figure 8, the motion of the paddle at a frequency of 1.9 Hz, though 
periodic, was not sinusoidal. This was due to the effect of the restraining mechanism on the 
shaker, which arrested the downward movement of the shaker bar on which the paddle was 
mounted. However, the filtered versions of tbese signals, shown in figure 9, which were used 
to reduce the data, are very nearly sinusoidal. 

The virtual mass and drag coefficients in [9] were calculated from the filtered force and 
acceleration signals using [33] and [34] respectively, and then correlated against the ampli- 
tude parameter (27rxo/D). Figures 11-22 show the variation of  the virtual mass and drag 
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1.5 

coefficients with amplitude parameter for the various void fractions tested. The best fit lines 
in these figures show that Cm and Co vary monotonically with amplitude parameter.The 
information in figures 11-22 is also presented in tables 2-7. 

As seen in figure 11, the virtual mass coeffcient for single-phase liquid increases, at a 
decreasing rate, with amplitude parameter in the measured range. The drag coefficient, 
as seen in figure 17, decreases rapidly up to an amplitude parameter of 0.5, and then 
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decreases at a much slower rate, finally approaching the steady-state value of the drag 
coefficient, 1.13 (Carmody 1964). Our results are for amplitude parameters generally 
smaller than those of Keulegan & Carpenter (1958). However, the trends observed in our 
data are similar to those found by Keulcgan and Carpenter for plates, although our 
measured values of  virtual mass and drag coefficients appear to be somewhat lower than 
values extrapolated from their data (for plates). 
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Figure 22. Variation of drag coefficient with amplitude parameter for a void fraction of 19~. 

Figure 23. Three-dimensional plot of the virtual mass cocmcient. 



270 e . s .  K A ~ I ~  et al. 

19% 

Figure 24. Three-dimensional plot of the drag coefficient. 

As can be seen in figures 12-16 and figures 18-22 in a two-phase fluid, for the same 
value of the amplitude parameter, the virtual mass coefficients tend to become smaller, and 
the drag coefficients larger, with increasing void fractions. This trend can be seen more 
clearly in the three dimensional plots given in figures 23 and 24. 

CONCLUSION 
During a blowdown transient, the maximum amplitude parameter of an INEL 

drag-disk is expected to be of the order unity, since a drag-disk of diameter 0.763 cm 
(0.3 in.) experiences a maximum displacement of the order of  0.1 cm. For this amplitude 
parameter the experimentally determined virtual mass coefficient is of the order of unity. 
It has been shown previously by Kamath & Lahey (1980), that a virtual mass coefficient 
as largo as 5.0 had a negligible effect on the transient response of the disk. Thus, we can 
conclude that the effect of  the virtual mass of the disk is negligible in the transient analysis 
of the INEL drag-disk, both in single and two-phase flows. 

NOMENCLATURE 
A0 amplitude of sinusoidal acceleration 
Co drag coefficient 
Cm virtual mass coefficient 
D diameter of the disk 
E Young's modulus of the material of  the beam 
f frequency 
fc cutoff frequency of the numerical filter 
f~ natural frequency of disk and beam 
f0 frequency of Oscillation 

sampling frequency 
fr roll-off termination frequency of the numerical filter 
Fd drag force on disk 

Fo,~ virtual mass force on disk 
G mass flux 
gc gravitational constant 
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thickness of the beam 
second moment of the area of the cross-section of a beam about its neutral axis 

h 
I 
j square root of - 1 
k spring constant 
l length of the beam 

L equivalent length, l + D/2 
M mass of disk and beam 
N number of data samples in one run 
p pressure 
t time 

To half the time period of one run 
Um center-of-mass velocity 
u0 amplitude of sinusoidal velocity 
Vk velocity of phase-k 
x displacement of the disk 

velocity of the disk 
5/ acceleration of the disk 

exponential Fourier Transform of x 
Y* complex conjugate of £ 
x0 amplitude of the (sinusoidal) displacement 

Greek 

At 

Pk 
#k 

#2~ 
oJ 

z~ 

y* 

symbols 
void fraction 
time internal between samples 
two-phase density, p~l - (=))  + p~(=) 
density of phase-k (k = l or "v") 
dynamic viscosity of phase-k (k = l, or v) 
dynamic viscosity of the two-phase mixture, #~.1 (=))  + #v(=) 
angular frequency 
cross-sectional average of 
is defined by 
complex conjugate of y 

R E F E R E N C E S  

BRmHAM, O. E. 1974 The Fast Fourier Transform. Prentice-Hall, Englewood Cliffs, New 
Jersey. 

C~BODY, T. 1964 Establishment of the wake behind a disk. J. Basic Engng 86, 869-882. 
GARRISON, C. J., FIELD, J. B. & MAY, M. D. 1977 Drag and inertial forces on a cylinder in 

periodic flow. J. of  the Waterway Port Coastal and Ocean Dw. 103, N. WW2. 
KAMATa, P. S. & LAHEY, R. T., JR. 1981 Transient analysis of DTT rakes. 

NUREG/CR-2151. 
K~MATH, P. S. & L ~ Y ,  R. T., JR. 1980 A turbine-meter evaluation model for two-phase 

transients. J. Heat Transfer 102. 
KEULECAN, G. H. & CARPENTER, L. H. 1958 Forces on cylinders and plates in an oscillating 

fluid. J. of Research of  the National Bureau of  Standarch 60, 423-440. 
LAI, R. Y. S. 1973 Translatory accelerating motion of a circular disk in a viscous fluid. Appl. 

Sci. Res. 27. 
LYLE, F. M. & LAX R. Y. S. 1972 The Stokes-flow drag on prolate and oblate spheroids 

during axial translatory acceleration. J. Fluid Mech. 52. 
MERCIER J. A. 1973 Large amplitude oscillations ofa  ~rcular cylinder in a 10w-speed steam. 

Ph.D. Dissertation, Stevens Institute of T~hnology. 



272 P.s. KAMATH et al. 

MORRISON, J. R., et al. 1950 The force exerted by surface waves on piles. Petroleum Trans. 
189, 149-157. 

ORMSBV, J. F. A. 1971 Design of numerical filters with applications to missile data 
processing. J. Assoc. Comput. Mach. 18, 440-466. 

SARPKAYA, T. 1975 Forces on cylinders and spheres in a sinusoidally oscillating fluid. J. 
Appl. Mech. 42, 32-37. 


